viernes, 22 de octubre de 2010

nucleo

En biología el núcleo celular (del latín nucleus o nuculeus, corazón de una fruta) es un orgánulo membranoso que se encuentra en las células eucariotas. Contiene la mayor parte del material genético celular, organizado en múltiples moléculas lineales de ADN de gran longitud formando complejos con una gran variedad de proteínas como las histonas para formar los cromosomas. El conjunto de genes de esos cromosomas se denomina genoma nuclear. La función del núcleo es mantener la integridad de esos genes y controlar las actividades celulares regulando la expresión génica. Por ello se dice que el núcleo es el centro de control de la célula.
Las principales estructuras que constituyen el núcleo son la envoltura nuclear, una doble membrana que rodea completamente al orgánulo y separa su contenido del citoplasma, y la lámina nuclear, una trama por debajo de ella que le proporciona soporte mecánico de forma semejante a cómo el citoesqueleto soporta al resto de la célula. Puesto que la envoltura nuclear es impermeable a la mayor parte de las moléculas. Los poros nucleares, que cruzan las dos membranas que la forman, son necesarios para permitir el paso de moléculas a su través, puesto que permiten el tránsito de pequeñas moléculas, como los iones, pero el movimiento de moléculas mayores como las proteínas está cuidadosamente controlado, requiriendo un transporte activo regulado por proteínas transportadoras. El transporte celular es crucial para la función celular, puesto que se necesita el paso a través de estos poros para la expresión génica y el mantenimiento cromosómico.
El núcleo fue el primer orgánulo en ser descubierto. Probablemente, el dibujo más antiguo que se conserva de este orgánulo se remonta a uno de los primeros microscopistas, Anton van Leeuwenhoek (1632–1723). Este investigador observó un hueco o "lumen", el núcleo, en eritrocitos de salmón.1 Al contrario que los eritrocitos de mamífero, los del resto de vertebrados son nucleados. El núcleo también fue descrito en 1804 por Franz Bauer, y posteriormente con más detalle por el botánico escocés Robert Brown en una charla dictada ante la Sociedad linneana de Londres en 1831.2 Brown estaba estudiando la estructura microscópica de las orquídeas cuando observó un área opaca, que llamó areola o núcleo, en las células de la capa externa de la flor, si bien no sugirió una función potencial para tal estructura.3 En 1838 Matthias Schleiden propuso que el núcleo desempeñaba un papel en la generación de células, denominándolo por ello "citoblasto" (constructor de células). Pensaba que había observado células nuevas alrededor de estos "citoblastos". Franz Meyen fue un fuerte opositor de esta opinión habiendo descrito previamente células que se multiplicaban por división y creyendo que muchas células carecerían de núcleo. La idea de que las células se podían generar de novo, bien por el "citoblasto" o bien de otro modo, contradecía los trabajos de Robert Remak (1852) y Rudolf Virchow (1855) quienes propagaron decisivamente el nuevo paradigma de que las células sólo eran generadas por otras células ("Omnis cellula e cellula"). La función del núcleo permanecía sin aclarar.4
Entre 1876 y 1878 Oscar Hertwig publicó varios estudios sobre la fecundación de huevos de erizo de mar, mostrando que el núcleo del espermatozoide entraba en el oocito, fusionándose con su núcleo. Esta fue la primera vez que se sugirió que un individuo se desarrollaba a partir de una sola célula nucleada. Esto estaba en contradicción con la teoría de Ernst Haeckel que enunciaba que se repetía la filogenia completa de una especie durante el desarrollo embrionario, incluyendo la generación de la primera célula nucleada a partir de una "monerula", una masa desestructurada de moco primordial ("Urschleim", en alemán). Por tanto, la necesidad del núcleo espermático para la fecundación estuvo en discusión por un tiempo. No obstante, Hertwig confirmó su observación en otros grupos animales, como por ejemplo en anfibios y moluscos. Eduard Strasburger obtuvo los mismos resultados en plantas (1884). Esto allanó el camino para la asignación de un papel importante del núcleo en la herencia. En 1873 August Weismann postuló la equivalencia de las células germinales paternas y maternas en la herencia. La función del núcleo como portador de información genética se hizo patente solo después, tras el descubrimiento de la mitosis y el redescubrimiento de la herencia mendeliana a principios del siglo XX. Esto supuso el desarrollo de la teoría cromosómica de la herencia.4

[editar] Estructuras

El núcleo es el orgánulo de mayor tamaño en las células animales.5 En las células de mamífero, el diámetro promedio del núcleo es de aproximadamente 6 micrómetros (μm), lo cual ocupa aproximadamente el 10% del total del volumen celular.6 En los vegetales, el núcleo generalmente presenta entre 5 a 25 µm y es visible con microscopio óptico. En los hongos se han observado casos de especies con núcleos muy pequeños, de alrededor de 0,5 µm, los cuales son visibles solamente con microscopio electrónico. En las oósferas de Cycas y de coníferas alcanza un tamaño de 0,6 mm, es decir que resulta visible a simple vista.7
El líquido viscoso de su interior se denomina nucleoplasma y su composición es similar a la que se encuentra en el citosol del exterior del núcleo.8 A grandes rasgos tiene el aspecto de un orgánulo denso y esférico.

[editar] Envoltura y poros nucleares

Artículo principal: Poro nuclear
Núcleo celular eucariota. En este diagrama se visualiza la doble membrana tachonada de ribosomas de la envoltura nuclear, el ADN (complejado como cromatina, y el nucléolo. Dentro del núcleo celular se encuentra un líquido viscoso conocido como nucleoplasma, similar al citoplasma que se encuentra fuera del núcleo.
Sección transversal de un poro nuclear en la superficie de la envoltura nuclear (1). Otros elementos son (2) el anillo externo, (3) rayos, (4) cesta y (5) filamentos.
La envoltura nuclear, también conocida como membrana nuclear se compone de dos membranas, una interna y otra externa, dispuestas en paralelo la una sobre la otra con una separación de 10 a 50 nanómetros (nm). La envoltura nuclear rodea completamente al núcleo y separa el material genético celular del citoplasma circundante, sirviendo como barrera que evita que las macromoléculas difundan libremente entre el nucleoplasma y el citoplasma.9 La membrana nuclear externa es continua con la membrana del retículo endoplásmico rugoso (RER), y está igualmente tachonada de ribosomas. El espacio entre las membranas se conoce como espacio perinuclear y es continuo con la luz del RER.
Los poros nucleares, que proporcionan canales acuosos que atraviesan la envoltura, están compuestos por múltiples proteínas que colectivamente se conocen como nucleoporinas. Los poros tienen 125 millones de daltons de peso molecular y se componen de aproximadamente 50 (en levaduras) a 100 proteínas (en vertebrados).5 Los poros tienen un diámetro total de 100 nm; no obstante, el hueco por el que difunden libremente las moléculas es de 9 nm de ancho debido a la presencia de sistemas de regulación en el centro del poro. Este tamaño permite el libre paso de pequeñas moléculas hidrosolubles mientras que evita que moléculas de mayor tamaño entren o salgan de manera inadecuada, como ácidos nucleicos y proteínas grandes. Estas moléculas grandes, en lugar de ello, deben ser transportadas al núcleo de forma activa. El núcleo típico de una célula de mamífero dispone de entre 3000 y 4000 poros a lo largo de su envoltura,10 cada uno de los cuales contiene una estructura en anillo con simetría octal en la posición en la que las membranas, interna y externa, se fusionan.11 Anclada al anillo se encuentra la estructura denominada cesta nuclear que se extiende hacia el nucleoplasma, y una serie de extensiones filamentosas que se proyectan en el citoplasma. Ambas estructuras medían la unión a proteínas de transporte nucleares.5
La mayoría de las proteínas, subunidades del ribosoma y algunos ARNs se transportan a través de los complejos de poro en un proceso mediado por una familia de factores de transportes conocidas como carioferinas. Entre éstas se encuentran las importinas, que intervienen en el transporte en dirección al núcleo, y las que realizan el transporte en sentido contrario, que se conocen como exportinas. La mayoría de las carioferinas interactúan directamente con su carga, aunque algunas utilizan proteínas adaptadoras.12 Las hormonas esteroideas como el cortisol y la aldosterona, así como otras moléculas pequeñas hidrosolubles implicadas en la señalización celular pueden difundir a través de la membrana celular y en el citoplasma, donde se unen a proteínas que actúan como receptores nucleares que son conducidas al núcleo. Sirven como factores de transcripción cuando se unen a su ligando. En ausencia de ligando muchos de estos receptores funcionan como histona deacetilasas que reprimen la expresión génica

No hay comentarios:

Publicar un comentario